
Journal of  Statistical Physics, Vol. 81, Nos. 1/2, 1995 

An Euler Solver Based on Locally Adaptive 
Discrete Velocities 

B. T. Nadiga 1 

Receioed October 12, 1994 

A new discrete-velocity model is presented to solve the three-dimensional Euler 
equations. The velocities in the model are of an adaptive nature--both the 
origin of the discrete-velocity space and the magnitudes of the discrete velocities 
are dependent on the local flow--and are used in a finite-volume context. The 
numerical implementation of the model follows the near-equilibrium flow 
method of Nadiga and Pullin and results in a scheme which is second order in 
space (in the smooth regions and between first and second order at discon- 
tinuities) and second order in time. (The three-dimensional code is ih~luded.) 
For one choice of the scaling between the magnitude of the discrete velocities 
and the local internal energy of the flow, the method reduces to a flux-splitting 
scheme based on characteristics. As a preliminary exercise, the result of the Sod 
shock-tube simulation is compared to the exact solution. 

KEY WORDS: Adaptive discrete velocities; Euler equation; kinetic-flux 
splitting; total-variation diminution. 

1. I N T R O D U C T I O N  

A discrete  ve loc i ty  gas is an  ensemble  o f  par t ic les  wi th  each  par t ic le  t ak ing  
on  one  o f  a smal l  finite set o f  a l lowable  veloci t ies /2 '  3~ Fur the r ,  the  in terac-  

t ion  be tween  par t ic les  is def ined to ach ieve  the des i red m a c r o b e h a v i o r  o f  
the system, wh ich  is usual ly  a set o f  par t ia l  differential  equa t ions .  Such a 

d i sc re t iza t ion  o f  the ve loc i ty  space  and  def in i t ion  o f  the  par t ic le  inter-  

ac t ions  (col l is ions  o r  r e l axa t ion  o r  m o r e  genera l ly  red i s t r ibu t ion)  also f rom 

the  basis for the lat t ice gas and  lat t ice B o l t z m a n n  t echn iques  which  have  

~Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, New 
Mexico 87545. E-mail: balu@lanl.gov. 

129 

0022-4715/95/1000-0129507.50/0 �9 1995 Plenum Publishing Corporation 



130 Nadiga 

been developed over the last 8 years (refs. 4-6 and references therein). In 
spite of the inherently compressible nature of discrete-velocity gases, lattice 
gases, and lattice-Boltzmann techniques, their applications in fluid flow 
modelin~g have been restricted to the incompressible or very low Mach 
number regimes (refs. 4-6 and references therein; refs. 7-9). In this article, 
we present a discrete-velocity gas which for the first time solves the com- 
pressible Euler equations without introducing any artifacts of the velocity 
discretization over a wide range of Mach numbers. This is achieved by 
letting the discrete velocities of the model adapt to the local flow condi- 
tions.~0) We show also how this scheme can be reduced to a characteristic- 
based flux-splitting scheme for the Euler equations, t~' ~2~ 

In the next section, the model is introduced and shown to reproduce 
the Euler equations. Section 3 gives a step-by-step numerical evolution of 
the model on the lines of Nadiga and Pullin t~ and Section 4 presents a the 
Sod shock tube simulation It3~ with the model. In Section5 we show the 
reduction of the method to characteristic-based flux splitting, and end with 
some remarks in Section 6. 

2. THE D I S C R E T E - V E L O C I T Y  M O D E L  

The discrete-velocity model we consider has 27 velocities (q,, a =  
0,  1 ..... 2 6 ) :  

qa = (qa.,-, q,,y, qa:), (qc,.,-, qay, q,,_-) ~ ( - q ,  O, q) (1) 

At any given point in space, the model thus has four different speeds 0, q, 
v/2 q, and, x,~ q. There is 1 velocity with zero speed, 6 velocities with 
speed q, 12 velocities with speed x/~ q, and 8 velocities with speed x/~ q- 
Note that this model consists of the familiar two-dimensional nine-velocity 
modeP ~4-161 at three different values of velocity in the z direction ( - q ,  0, q), 
thus comprising 27 velocities. Collisions between particles in the model are 
such that they individually conserve mass, momentum, and energy. In par- 
ticular, there are two types of collisions which not only conserve mass, 
momentum, and energy, but which also change the speeds of the particles 
involved. (The postcollision pair of speeds is not a mere permutation of the 
precollision speeds.) Describing them in the plane of the collision, the first 
type involves a speed-v/2 q particle colliding with a stationary particle to 
result in two mutually perpendicular speed-q particles. The second type 
involves a speed-x/~ q particle colliding with a stationary particle to result 
again in a pair of particles moving mutually perpendicularly, but now one 
with speed q and the other with speed ~ q. 



Euler Solver Based on Adaptive Discrete Velocities 131 

2.1. The S ta t ionary  Equi l ibr ium Distr ibut ion 

Thermodynamic equilibrium of the model is defined as the state of 
detailed balance of all possible collisions. Consider the stationary equi- 
librium of such a gas: since there are no preferred directions, the particles 
are identified by their speeds and there are thus four variables no, 1/1, 1/2, 
and n3, where no is the probability that a particle is stationary, n] is 1/6 of 
the probability that a particle has a speed q, since there are six speed-q 
velocities in the model, n2 is 1/12 of the probability that a particle has 
speed x//2 q, and 1/3 is 1/8 of the probability that a particle has speed V/3 q. 
The subscripts in no,..., 1/~ are the square of the speed divided by the 
unit of speed q. Detailed balancing of collisions results in the equilibrium 
condition 

,) 
no1/2 = ni (2) 

1/0113 ~ 111112 

The population densities (no, 1/], n2, and n 3) are further constrained to 
satisfy the specified hydrodynamic quantities mass n and energy ne:  

1/=1/o + 611] + 12n 2 + 8n 3 
(3) 

n e  = q2(3nl + 12n2 + 12n3) 

The stationary (n--2~ =0)  equilibrium velocity distribution is obtained by 
the solution of above four equations (2) and (3): 

n - n ( 3  e 3 
0 - 2 7  \ - 2 ~--~) 

n e - e 
111 = 

I12 = ~  (3 e e 2 

1/3 = ~  

(4) 

2.2. The Euler Equat ions 

The equations we seek to model are the Euler equations, which 
describe the compressible inviscid flow of a fluid (here an ideal monatomic 



132 Nadiga 

gas). Wr i t t en  in  a conservat ive  form, (]7~ a n d  with no  o ther  b o d y  forces, 
they are 

Op 
- ~ - + V . p u = O  

Opu 
~ -  + v ' ( p I + p u |  (5) 

OPO~' + V " { (p + pe,)u} = O 

where  | represents  the b i n a r y  ou te r  p ro d u c t  opera tor ,  I is the un i t  tensor ,  
and  e, = e + u2/2. The  pressure  p is g iven by  the ideal  gas e q u a t i o n  of  state 
for a m o n a t o m i c  gas: p = 2/3pe. 

2.3. The Locally Adaptive Discrete Velocit ies 

To represent  the above  equa t ions  as a discrete-veloci ty gas, we 
cons ider  the s t a t iona ry  (n-2-~, = 0 )  27-veloci ty gas discussed above  u n d e r  
two s imple t r ans fo rma t ions  (See Fig. 1): 

1 
(u-q,v+ q,w)4 3(u,~+q.w) 2(u+q,v+q,w) 

(u-q,v-q.w)6 7(u,/-q.w) 8(u+q,v-q,w) 

Fig. 1. The origin of the discrete-velocity space is determined by the local flow velocity 
u=(u,  o, w) of the Euler system and the unit of discrete velocity q by its specific internal 
energy. The original nine velocities (q,.,., qa.,., 0), where (qax, q~y) ~( -q ,  0, q), are shown after 
they have adapted themselves to the local macroscopic state. The schematic has been drawn 
on the q~ = w plane, where w is the z component of the macroscopic flow velocity used in the 
Euler equations. Note that the allowable discrete velocities are now different at each point in 
space and are different at the same point with time. 



Euler Solver Based on Adaptive Discrete Velocities 133 

�9 The origin of the discrete-velocity space is translated to u(x, t), 
where u(x, t) is the temporally and spatially varying velocity field of the 
Euler equations. 

�9 The unit of discrete velocity q is determined locally from the specific 
internal energy field e(x, t) of the Euler equations: 

q(x, t) = [~e(x, t)] ,/2 (6) 

The scaling factor 0c is a parameter in the model. To ensure positivity of the 
distribution (4), the restriction on ~ is 

2/3 < ct < ~ (7) 

Figure l shows the original nine velocities [q,.,.,qay, O; (qax, qay) e 
(--q,  0, q)] after they have adapted themselves to the local macroscopic 
state. The schematic is a projection onto the qa: = w plane, where w is the 
macroscopic velocity in the z direction used in the Euler equations (5). 
With this kind of adaptation, the allowable velocities in the model are now 
Ca(X, t)=q~(x,  t)+U(X, t), i.e., the allowable discrete velocities are com- 
pletely different at each point in space, and are different at the same point 
in space at different times. 

2.4. The Equiva lence of  the  M o d e l  to  the  Euler Equat ions 

The density and energy of the discrete-velocity gas are set equal to 
that in Eq.(5) and again note that ~ has been assumed 0. The 
equivalence of the discrete-velocity gas system to the system of Euler 
equations might now be obvious. However, for the sake of completeness, 
we explain the equivalence. Considering the evolution of the discrete- 
velocity gas, the (model) Boltzmann equations ~3" ~5~--a statement of the 
conservation of the number of particles with a particular discrete 
velocity--are 

On~ 
Ot + e," Vna = Qa(n, n), a = 0  ..... 26 (8) 

where Q. is the nonlinear collision operator and the left-hand side 
represents streaming of particles with velocity ca. The zeroth-, first-, and 
second-order velocity moments of Eq.(8) give, respectively, noting 
that the moments of the collision terms on the right-hand side vanish 



134 Nadiga 

owing to the mass-, momentum-, and energy-conserving nature of each 
collision, 

On ~+v.~--~=o 
~naCa 
0 - - - ~ +  V" n .c .  |  = 0 (9) 

9 2 Ona(cJ2) c a 
Ot + V ' n a ~ - % = O  

where the overbar denotes averaging with respect to the discrete velocities. 
From the translation of the origin of the discrete-velocity gas, 

na% = n.(u + qa) = pu 

since noq, = O. We further have 

n ~ % |  = n a ( u  + q,,) | (u + qo) 

= n u |  + n a q a |  + p u Q u  

c 2 /u2 + q .  2 ' ) 
n a ' ~ c a = n , , ~ - " " ~ + u ' q a  (u + qa) 

q2 U 2 
= na 2 u +p-~- u + n~(q," u) q~ 

= pe,u + n~(q~ | q~)u = (p + pe,) u (10) 

The equivalence is thus complete. Note that in the above equation, since 
naq ~ = O, the particles are distributed symmetrically with respect to qa and 
so naq o | q~ is isotropic and reduces to the pressure p. 

For convenience, the Euler equations (5) and the moment equations 
(9) may be rewritten as 

with (') f =  pu 

pe, 

a f  
~ - ~ + V . G = O  (11) 

[ ] c; 
G =  [pu, p I + p u |  (p +pe , )u ]  = n~%, n~%| n~ ~-c,, 



Euler Solver Based on Adaptive Discrete Velocities 135 

3. T H E  N U M E R I C A L  T E C H N I Q U E  

Hyperbolic systems of conservation laws, like the Euler equations (5) 
in the present case, admit weak solutions in the form of shocks. At these 
shocks, the gradients of the primary quantities are infinite, and obviously 
this cannot be represented correctly in a shock-capturing numerical scheme. 
Shock-capturing schemes are ones in which all grid points are treated in 
exactly the same fashion irrespective of whether they are inside a shock or 
outside, and as opposed to shock-tracking schemes, which keep track of 
where the shocks are and treat grid points located in shocks differently 
from the others. While each have their advantages and disadvantages, used 
on present-day supercomputers, shock-capturing methods are clearly 
preferable because of their homogenity of computation. Numerically cap- 
turing shocks in nondissipative systems like the Euler equations poses the 
problem of dispersive ripples: a phenomenon in which as a wave steepens, 
energy flows into the smaller scales and since there is no dissipation, 
accumulates in the smallest allowed wavelengths--those of the grid spacing. 
Thus with the formation of any shock, energy piles up in grid-scale oscilla- 
tions and swamps out scales of interest. A way out of this problem is to dis- 
sipate energy at the smallest length scales--the grid scales---either explicitly 
or implicitly. Explicit artificial viscosity in general needs adjustments 
depending on the problem, while physics-based (as opposed to the inviscid 
idealization represented by the Euler equations) implicit artificial (from the 
point of view of the Euler equations) viscosity is robust and results in 
numerical shock widths of the same order as the actual viscous (Navier- 
Stokes in the present case) shock widths. 

We use exactly such an implicit artificial viscosity technique (also 
called a kinetic numerical scheme owing to the physical kinetic basis of 
the scheme) which was developed in Nadiga and Pullin ~I) for the discrete- 
velocity framework. A brief description of its usage here follows: For 
simplicity, consider the computational domain divided into uniform cubical 
cells, at the centroids of which are stored the cell-averaged values of (p, p u, 
and pc,). The evolution at each centroid proceeds as follows: 

Step 1. Calculate the local unit of discrete velocity using Eqs. (6) 
and (7). 

Step 2. Using Eq. (4) and the macroscopic variables of density p 
and specific internal energy e, calculate the population densities of the four 
speeds no, nl, n2, and n3. Note that in light of restriction (7) and owing 
to the fact that the stationary distribution function was calculated based on 
detailed balancing, the above four population densities are necessarily 
positive. 



136 Nadiga 

Step 3. Calculate the split fluxes G + and G -  at the centroids using 
the definitions 

G + =  

2 \ 
Ha tax H a  Cax na CayCax ~ na 2 C a x \  

) cay>O nca~,>Op t~ 12Car>Os 2 ncQ.~,> 0p f. nCaaY>0 ~ no Cay "'a -ax-ay --a -ay "a --a:oay Gay 

c 2 
Caz>O lqCa:>Op p Caz>O ca.>O 2 nCaz>O a p 

na Caz "'a -ax-az  Ha CayCaz Ha" Caz a 2 - a z /  

(12) 

G -  = 

~/cax<0p Cax<O 2 Cax<O /,/cax<0p ~ HCax<O Ca Ca x 
"'a -as  Ha tax  ~a CayCax "'a -az-ax  a - 2  . 

co.<O llco.<Ot, p car<0 2 Hcuv<O nCoy<o Ca 
na Cay "'a -ax-ay  Ha Cay a ~ CazCay - a  - 2  

9 
nCaz<Ot? /,/Ca.- < 0 p (, nCaz<Op p nCaz<Oc2 nCaz<O Ca 
--a -az "-a -ax-az  "'a -ay-az --a -az --a 2 C a z /  

where n C 2 ~  is the average n.c.x taken only over the discrete velocities 
c .  which have a positive x componen t  c.~, etc. For  example,  when u > 0 
and w > O, but v < O, 

G+= l 
uP+(u+q)Q uZP+(u+q)2Q uoP+(u+q)vQ 

(v+q)Q ( v + q ) u Q  (v+q)2Q 

wP+ (w+q) Q wuP+(w+q)uQ wvP+(w+q) vQ 

n"~>~ c~ / uwP+(u+q)wQ ~ ~c~ 

n%.>o a (v+q)wQ . -~c o, 

- - _ - 7 " -  
T/c~ > 0 Ca ] w2p+(w+q)2Q a" ~co~/ 

(13) 

I (u-q)Q 

G- = vP+(v-q)Q 

(w-q)Q 

\ c7, (u-q)2Q (u-q) vQ (u-q) wQ n~,-, <~ ~- cax 

nC,y<o c20 ) vuP+(v-q) uQ v2P+(v-q)2Q vwP+(v-q)wQ . -~c.v 

- - - - ~ - -  
nca.<o Ca ] (w--q) uQ (w-q) vQ (w-q)ZQ .- -~c~._/ 



Euler Solver Based on Adaptive Discrete Velocities 137 

where P = (no + 4n~ + 4n2) is the density of particles in, say, the C,x = u 
plane and Q = ( n l + 4 n 2 + 4 n 3 )  is the density of particles in, say, the 
cax = u + q or c,,.~ = u - q  plane. In the above two equations 

C 2 e 2 

nCa~>O -a c nCaz<O-a 
- "  2 ax,..., , 2 c,~ 

have been left as such for compactness of notation. 

Stop 4. Assuming a linear distribution of the fluxes within the cells 
in the direction under consideration, interpolate the split fluxes G § and 
G -  to the cell boundaries: 

�9 interpolate G~,  G~,  G~3, G~,  and G~ to ( i + ~ , j , k )  
. - - i �9 1 �9 interpolate G~], G~,  G~,  G~,  and G~ to ( ,  j -_~,  k), and so on 

(note that the first subscript of G corresponds to the coordinate 
direction and the second to that of the conserved quantity) 

and apply the minmod limiter to the interpolated fluxes: 

G~(i  + �89 j, k) = G~(i,  j, k) + �89 minmod(AbckG~(i,  j, k), ZltwdG~(i, j,  k) ) 

G~(i,  j -  �89 k) = G~(i ,  j, k) - �89 minmod(Zlbr G~(i, j, k), ArwdG~(i, j,  k) ) 

(14) 

and so on, and where 

zlrwdGx+(i, j, k) = G~(i  + 1, j, k) - G~(i,  j, k) 

is the first foward difference of G ~l in the x direction at the centroid of cell 
(i, j, k), and 

AbcuG~(i, j, k) = G~(i, j,  k) - G~(i, j -  1, k) 

is the first backward difference of G~ in the y direction at the centroid of cell 
(i, j, k), and so on. Here minmod is the one-dimensional total-variation- 
diminishing operator as discussed in refs. 18 and 19: 

0 if sgn(p)~sgn(q)  (15) 
m i n m o d ( p , q ) = s g n ( p )  min{IPl,]ql} if sgn(p)=sgn(q)  

with sgn(p) being the sign of p and IPl the absolute value of p. 

Stop 5. Calculate the fluxes at the cell boundaries: 

G(i + �89 = G+(i  + �89 + G - ( i  + �89 

where ( i+  l) = ( i+  l~,j,'k), ( i , j +  l~, k), and ( i , j , k + � 8 9  in turn. 



138 Nadiga 

Step 6. Advance the primary variables by one-half of the timestep to 
get the midpoint values: 

where, e.g., 

V. 

Vo +,1t/2 _ fro A t _ +~-(v. G'O) 

Gll) 
G2, = G,,(i + �89 j, k)Ax- G,,(i- �89 k) 

\G31 

G,l(i,j+�89 j-~_,k)" l + 
Ay 

+ C~,(i, j, k + � 8 9  G3,(/, j, k - � 8 9  
Az 

(16) 

Step 7. Repeat steps 1-4 using the midpoint values f,0+a,/2 to obtain 
the fluxes at the midpoint G '~ and take the full timestep to obtain the 
new time level values f": 

f ,  = f,o + At(V. G '~ + ~,/2) (17) 

In the above procedure the fluxes were interpolated and limited; 
instead, the primary quantities f could be interpolated and limited. We 
have done both and the behavior of the two are essentially identical. The 
timestep in the method is limited by the CFL stability criterion 

m a x  IU+__qI~-x <~1, Ue(u,v,w), AXe(Ax, Ay, ztz) (18) 

The code (in Connection Machine Fortran) described by the above step-by- 
step procedure is included in the appendix. Notwithstanding the somewhat 
complicated procedural description above, the simplicity of the resulting 
code is evident. 

4. A N U M E R I C A L  E X A M P L E  

The code presented in the appendix, a Connection Machine Fortran 
implementation of the second-order (in space and time) scheme described 
in the previous section, was used to calculate the Sod shock-tube problem. 



Euler Solver Based on Adaptive Discrete Velocities 139 

The Sod test case has the initial conditions ( p t = l ,  u /=0 ,  p / = 1 )  and 
(Pr = 0.125, ur = 0, Pr = 0.1 ) corresponding to an initial pressure ratio of 10 
and a density ratio of 8. Subscript l denotes the left half and subscript r 
denotes the right half at time 0. For a monatomic gas, this reduces to the 
initial conditions (p l=  1, u l=0 ,  et= 1.5) and (pr=0.125, u r=0 ,  e~= 1.2). 
Only 128 points were used for this simulation, at a timestep corresponding 
to a CFL number of 0.69. [The ~ in Eq. (6) was set at 10/9"1. In Fig. 2, the 
exact density, specific internal energy, velocity, and pressure profiles (solid 
lines) are compared to the corresponding profiles (open diamonds) 
obtained from the discrete-velocity simulation. The agreement is good: The 
shock is typically 3--4 cell widths and the edges of the rarefaction are not 
too badly rounded. The spreading of the contact surface is, however, 
substantial, as with other flux-splitting schemes. 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

, . . . , . . . , . . . , . . . , . . . , . . .  

~ a r  Density 

elaction 

, . . . , . . . , , , . , . . , , . . . i . . . i  

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 
X 

2.0 ' ~  

1.5 

1.0 

Specific Internal Energy 
0.5 

0.0 . . . . . . . . . . . . . . . . . . . . . . . .  
-0.6-0.4 -0.2 0.0 0.2 0.4 0.6 

X 

1.0 

0.8 

0.6 

0.4 

0.2 

-0.0 

-0.2 

m~~city 
, . . . . . . . . . . . .  , . . . , . . . , . . . L ,  

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 
X 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

, . . . , . . . , . . . , . . . , . . . , . . .  

essure 

Inltal High Press. InilJal Low Pn~. 
and Density and Density ~1 
R~ion . . . . . . .  R~ion . . . . . . .  

- 0 . 6 - 0 . 4  -0.2 0.0 0.2 0 .4  0.6 

x 

Fig. 2. The Sod shock-tube problem: At a dimensionless time of 0.288 after the diaphragm 
bursts (the diaphragm is initially at x =  0), the initial discontinuity in pressure and density 
(pressure ratio of 10 and a density ratio of 8) is resolved into a right-going shock wave located 
at about x = 0.5, a left-going rarefaction centered about x =  -0.3, and a right-going contact 
surface at about x = 0.2. The solid line is the exact solution and the diamonds are the result 
of the simulation using the locally adaptive discrete velocities. 



140 Nadiga 

5. THE RECOVERY OF C H A R A C T E R I S T I C - B A S E D  
FLUX SPLITTING 

From the point of view of finite differencing, high-order shock-capturing 
techniques used for numerically solving inviscid hyperbolic systems of con- 
servation laws are in general based on high-order upwinding. Physically, 
upwinding can be viewed in two different ways: first, as resulting from a 
Gudonov methodology of resolving discontinuities in data at cell interfaces 
using an approximate Riemann solver, c~' ~2) and second, as resulting from 
the local solution of the collisionless Boltzmann equations, t2~ The 
present scheme falls into the second category, but differs from other such 
schemes in having a discretized velocity space. 

If the unit of discrete velocity q(x, t) is set equal to the local sound 
speed a(x, t), 

q(x, t) = a(x, t)=(TRT)l/2= e (19) 

where 7 = 5/3 for a monatomic gas. Next, from the formulas for the split 
fluxes, Eq. (13), with P =  0.4p, Q = 0.3p, and q = a, in the one-dimensional 
case, there are three beams at the three characteristic speeds u + a, u, and 
u - a .  Now, depending on the signs of u-t-a, u, and u - a ,  the positive 
fluxes consist of the beams whose speeds are positive and the negative 
fluxes consist of the beams whose speeds are negative. Thus, the scheme 
now exactly propagates information along the characteristics of the Euler 
equations and reduces to a characteristic-based flux-splitting scheme. r ~2~ 
In higher dimensions, however, the inherent multidimensional (and 
upwinding) nature of particle motion in the present scheme appears to 
make if different and needs to be further investigated. 

6. C O N C L U S I O N  

Wanting to incorporate the simple and elegant way in which discrete- 
velocity gases (which include the lattice gas and lattice-Boltzmann formula- 
tions) combine physics and numerics in the finite-volume techniques for the 
Euler equations led us to an adaptive discrete-velocity model for the Euler 
equations. The adaptive nature of the discrete velocities (i.e., the variable 
origin and local scaling of the discrete velocities) seems to bridge the gap 
between the newer discrete-velocity techniques and the more conventional 
flux-splitting techniques. Based on earlier work, we develop a second-order 
(in space and time) scheme which is very simple and yet robust: it can 
handle flows over a wide range of Mach numbers accurately and capture 



Euler Solver Based on Adaptive Discrete Velocities 141 

shock jumps over 3--4 slab widths with no ocillations. We are presently work- 
ing on an extension of the method wherein there is a Bhatnagar-Gross- 
Krook(-'3)-like relaxation of the particle distributions over the timestep At, 
along the lines of ref. 22. This will further reduce the diffusive nature of the 
shocks and the rounding of the corners of rarefaction waves. We wish to 
emphasize at this point that since the new scheme is a finite-volume technique, 
the use of discrete-velocity gases is now possible with arbitrary and irregular 
spatial meshes. (Though this point was implicit in refs. 1 and 10, it has some- 
times been overlooked.) The limiting scheme used to achieve second-order 
accuracy is, however, one dimensional and therefore the second order scheme 
suffers from all the drawbacks of dimension-split methods. It remains to be 
investigated if the method can be made genuinely multidimensional. We also 
plan to investigate the extension of the model to solve the Navier-Stokes 
equations from its present capability of solving the Euler equations. 

The full three-dimensional code is presented in the appendix. It is in 
CMFortran (a CM extension of Fortran90) for ease of understanding and 
presentation. A Fortran77 version of the code may be had from the author 
upon request. 

APPENDIX: THE C M F O R T R A N  CODE LISTING 

include '/usr/includelcmlcmssl-cmf.h' 
include ~include.h' 
real,array(5,nx,ny,nz)::fnew,fold 

cmf$ layout fnew(:serial,,,),fold(:serial,,,) 

c 
c INITIALIZE HERE. (Code left out.) 

c 
call CMF_cm_array_to_file(22,fnew,ioerr) 
cflav=O 

nav=O 

print *,~' 
c MAIN LOOP TO DO MIDPOINT INTEGRATION 

do i00 kt=l,nt 
call flux3d(fnew) 
fold=fnew+O.5*dt*dfdt 

call flux3d(fold) 
fnew=fnew+dt*dfdt 
if(mod(kt,ntwrite).eq.O) then 
prin~ 300,kt*dt,kt,cflav/nav,cfl 
call CMF_cm_array_to_file(22,fne,,ioerr) 

endif 
100 continue 
300 format('time=',f8.4,' kt=',iS,' cflav=',f7.3,' 

stop 

end 

cfl =~ ,f7.3) 

822/81/I-2-10 



142 Nadiga 

Subrou t ine  f lux3d 

c This subroutine calls fluxld 3 times, once for each dimension. 

subroutine flux3d(fbasic) 

include "include.h" 
real,array(5,nx,ny,nz) : :fbasic 

cmf$ layout fbasic(:serial,, ,) 
dfdt=O. 0 

call fluxld(2,3,4,fbasic) 
call fluxld(3,4,2,fbasic) 

call fluxld(4,2,3,fbasic) 

return 

end 

Subrou t ine  f l u x l d  

c For the cell centered at i, this subroutine calculates the 

c forward going fluxes at i+1/2 and backward going fluxes at i-i/2 
c The limiting procedure is used on the primary quantities. 

subroutine flux id(iaxis, j ax, kax, fbasic) 

include "include.h" 

integer iaxis, j ax,kax 

real, array(nx,ny,nz) : :tmpll,tmp12,tmp13 

real, array(nx,ny,nz) : :rho,u,v,w,e,q 

real, array (5, nx, ny, nz) : : fbasic,gxp,gxm, dff 
cmf$ layout fbasic(:serial,, ,) 

cmf$ layout gxp(:serial,,,),gxm(:serial,,,),dff(:serial,,,) 
cmf$ layout tmp11(.,),tmp12(,,),tmp13(,,) 

cmf$ layout rho(,,),u(,,),v(,,),w(,,),e(,,),q(,.) 

call minmod (fbasic, iaxis, dff) 

gxp--fbasic+O. 5*dff 
gxmffbasic-O. 5*dff 

c Calculate Forward going fluxes at i+1/2 (ru,ruu,rvu,rwu,retu) 
rhofgxp(l, : . : . :) 

u=gxp (iaxis, : , : , :)/rho 

v=gxp (j ax, : , : , : )/rho 

w=gxp (kax, :, :, :)/rho 
efgxp(5, :, :, :)/rho 

afe-O. 5* (u*u+v*v+w*w) 
q--sqrt (alpha*e) 

c Note: correct only for 1D 

cfl=maxval (max (ab s (u-q) , abs (u+q)) ) *dt/dxyz (iaxis) 
cflav=cflav+cfl 

nay=nay+ 1 
erie/(q*.2+1. Oe-30) 

c Calculate the stationary equilibrium distribution at i+1/2 
imp=3. -2. *e 

rho=rho/27. 

nO=rho*tmp**3. 

nl=rho*tmp*tmp*e 
n2=rho*tmp*e*e 

n3=rho*e**3. 



Euler Solver Based on Adaptive Discrete Velocities 143 

c Mass 

tmpl(1, :, :, :)=4.~ (n2+n3)+nl 

trap2(1, :, :, :)=4.* (n2+nl)+nO 
tmp3 (I, :, :, : ) =4. �9 (n2§ +nl 

c X-Momentum 

tmpl(iaxis, :, :, :) =tmpl (1, :, :, : )* (u+q) 

tmp2(iaxis, :, : , :)=tmp2(l, :, :, :)~(u) 

trap3 (iaxis, :, :, :)=trap3(1, :, :, :) ~(u-q) 
c Y-Momentum 

tmpl (j ax, :, :, :)=tmpl(l, :, :, :)*v 

tmp2(jax, :, :, :)=imp2(1, :, :, :)*v 

tmp3(jax, : , : , :)=imp3(1, : , :. :)~v 
c Z-Momentum 

tmpl(kax, :, :, :)=tmpl (i, :, :, :)~g 

imp2 (kax. :, :. : ) =trap2 (1, :, :, : ) *w 

tmp3(kax, : . : , :)=tmp3(l, :, :, :)*w 
c Energy 

tmpll=v*v 

tmp12=w~w 

imp13=2. *q*q 
tmp=2. * (2. *n3+n2) �9 (imp ll+tmp12+tmp 13) + (2. *n2+nl) �9 (tmpll+tmp12) 

tmpl (5, :, :, : )=0.5*(tmpl(1, :, :, : )* ((u+q)* (u+q)+tmp11+tmp12) +imp) 

trap2(5, :, :, :)=0.5, (imp2(1, :, :, :)*(u*u+tmp11+tmp12)+ 

> 2. * (2. *n2+nl) * (trap 11+tmp12+tmp 13) + (2. *n1+nO) * (trap 11+trap 12) ) 

trap3 (5, :, :, :)=0.5*(trap1(1, :, :, : )* ((u-q)* (u-q) +tmp11+tmp12) +imp) 

tmp 1 I= (u+q+abs ((u+q)) ) 

trap 12= (u+abs (u)) 

tmpl3= (u-q+abs ((u-q)) ) 

forall(i=l:S) 
> gxp(i, :, :, :)=0.5. (tmpll*tmpl(i, :, :, :)+tmpl2*tmp2(i, : , :, :)+ 

> tmp13*tmp3(i, :, :, :)) 
c Calculate Backward going fluxes at i-I/2 (ru,ruu,rvu,rwu,rstu) 

rho=gxm(l, : , : , :) 

u=gxm(iaxis, : , :, :)/rho 

v=gxm(jax, :, :, :)/rho 
w=gxm(kax, :, : , :)/rho 

e=gxm(5, : , : , :)/rho 

e=e-O. 5* (U*U+V*V+W*W) 

q=sqrt (alpha~a) 
e=e/(q*~2+1. Oe-30) 
cf l--maxval (max (abs (u-q), abs (u+q)) ) *dr/dxyz (iaxis) 

cflav=cflav+cfl 

nav=nav+ 1 

imp=3. -2. *e 

rho=rho/27. 
nO=rho~tmp**3. 

nl=rho*t~np*tmp*e 

n2=rho*tmp*e~e 

n3=rho*e~*3. 
tmpl(1, : , :, :)=4.*(n2+n3)+nl 

trap2 (1, :, :, :)=4. * (n2+nl)+nO 
tmp3(l, :, :, :)=4. �9 (n2+n3)+nl 



144 Nadiga 

tmpl (iaxis, :, :, :)=tmpt (i, :, :, :)* (u-q) 
trap2 (iaxis, :, :, :)=tmp2(t, :, :, :)* (u) 
trap3 (iaxis, :, :, :)=tmp3(1, :, :, :)* (u+q) 
tmpl (jax, :, : , :)=imp1(1, : , :, :)*v 
tmp2(jax, : , :, :)=trap2(1, : , :, :)*v 
tmp3(jax, : , : , :)=imp3(1, : , :, :)*v 
tmpl (kax, :, :, :)=tmpl(l, :, :, :)*w 
imp2 (kax, :, :, :)=trap2(1, :, :, :)*w 
tmp3(kax, :, :, :)=tmp3(l, :, :, :)*w 
tmp11=v*v 
tmpl2=w*w 

trap13=2. *q*q 
trap=2. * (2. *n3+n2)* (tmpli+tmp12+tmp13) + (2.*n2+nt)* (tmptt+tmp12) 
imp1 (S, :, : ,  :) =0.5. (tmpt(1, :, :. : )*((u-q)*(u-q)+tmpii+tmpl2)+tmp) 
imp2 (5, :, : , : ) =0.5. (imp2 ( I, :, :, : )* (u*u+tmp 11+imp 12) + 

> 2. * (2. *n2§ * (imp 1 l+tmpl2+tmp 13) + (2. *nl+nO) * (tmpl 1+trap 19) ) 
trap3(5, :, :, :)=0.5, (tmp3(l, :, :, :)*((u+q)*(u+q)+tmp11+tmp12)+tmp) 

imp I I= (u-q-abs ((u-q)) ) 
trap12= (u-ahs (u)) 
tmpl3= (u+q-abs ((u+q)) ) 

forall (i=1 : 5) 
> gxm(i, :, :, :)=0.5*(tmpll*tmp1(i, :, :, :)+tmp12*tmp2(i, :, :, :)§ 

> tmpl3*tmp3(i, :, :, :)) 
tmpl=cshift (gxm, iaxis, I) 
tmp2=cshift (gxp, iaxis, -I) 
dfdt=dfdt§ (tmp2-gxp+gxm-tm p I)/dxyz (iaxis) 
return 
end 

Subrout ine  minmod 

c Given am array y, this routine returns the limited first difference 
c using the minmod limiter. 

subrout ins minmod (y, j, ydff) 

include "include.h" 
real, array(5,nx,ny,nz) : :y,ydff 

cmf$ layout y(:serial,,,),ydff(:serial,,,) 
data eps/l.Oe-30/ 
tmpl= (cshift (y, j, l)-y) 
trap2= (y-cshift (y, j ,-I)) 
ydf f=tmp2*tmp 1 
ydff=sign(1. ,tmpl)*max(O. ,ydff)/abs (ydff+eps) 
ydff=ydff*min( (abs (tmpl)), (abs (imp2)) ) 
return 

end 

include.h 

c Though nx=256, since we are running with periodic boundary conds. 
c only half of that i.e. 128 points are really used. 

integer ,parameter : : nx=256 ,ny=16 ,nz= I 

real, array (nx,ny,nz) : :nO,nl,n2,n3,tmp 
real, array(5 ,nx,ny,nz) : : dfdt ,tmpl ,trap2 



Euler Solver Based on Adaptive Discrete Velocities 145 

cmf$ layout nO(,,),nl(,,),n2(,,),n3(,,),tmp(,,) 
cmf$ layout dfdt(:serial,,,),tmpl(:serial,,,),tmp2(:serial,,,) 

common/scalar/ dt,qurat,alpha,cfl,cflav,nav,dxyz(4) 
common/vector/ nO,nl,n2,n3,tmp,dfdt,tmpl,tmp2 

A C K N O W L E D G M E N T  

This work was supported by the DOE in part under the C H A M P P  
program. We thank an anonymous referee for helpful criticism of an earlier 
version of this article. 

REFERENCES 

1. B. T. Nadiga and D. I. Pullin, A method for near-equilibrium discrete-velocity gas flows, 
J. Cornput. Phys. 112:162 (1994). 

2. J. E. Broadwell, Shock structure in a simple discrete velocity Gas, Phys. Fluids 7:1243 
(1964). 

3. R. Gatignol, Th6orie Cinktique des Gaz ~ Rbpartition Discrkte de Vitesses (Springer-Verlag, 
Berlin, 1975). 

4. G. D. Doolen, ed., Lattice Gas Methods for PDE's {Addison-Wesley, Reading, 
Massachusetts, 1989). 

5. G. D. Doolen, ed., Lattice Gas Methods for PDE's: Theory, Applications and Hardware 
(Physica D 47 (North-Holland, Amsterdam, 1991 ). 

6. Bibliography, Special 1994 Lattice Gas Issue, Fields Institute Series (February 1994). 
7. S. Y. Chen et al., Lattice Boltzmann computational fluid dynamics in three dimensions, 

J. Stat. Phys. 68:379 (1992). 
8. G. McNamara and B. Aider, Analysis of the lattice Boltzmann treatment of 

hydrodynamics, Physica A 194:218 (1993). 
9. Y. H. Qian and S. A. Orszag, Lattice BGK models for the Navier-Stokes equation: Non- 

linear deviation in compressible regimes, Europhys. Left. 21:255 (1993). 
10. B. T. Nadiga, An adaptive discrete velocity model for the shallow water equations, 

J. Comput. Phys. 121 (1995), (to appear). 
11. P. L. Roe, Characteristic-based schemes for the Euler equations, Annu. Ret,. Fluid Mech. 

18:337 (1986). 
12. A. Harten, P. D. Lax, and B. van Leer, Upstream differencing and Gudonov-type schemes 

for hyperbolic conservation laws, SIAM Rev. 25:35 (1983). 
13. G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyper- 

bolic conservation laws, J. Comput. Phys. 27:1 (1978). 
14. D. d'Humi+res and P. Lallemand, 2-D and 3-D hydrodynamics on lattice gases, Helv. 

Phys. Acta 59:1231 (1986). 
15. B. T. Nadiga, J. E. Broadwell, and B. Sturtevant, A study of a multispeed cellular 

automaton, irr Rarefied Gas Dynamics: Theoretical and Computational Techniques 
(Progess in Astronautics and Aeronautics, V ol. 118, 1989). 

16. S. Chen, M. Lee, K. H. Zhao, and G. D. Doolen, A lattice gas model with temperature, 
Physica D 37:42 (1989). 

17. G. B. Whitham, Lhlear and Nonlinear Wat, es (Wiley-lnterscience, New York, 1974). 
18. B. Van Leer, Towards the ultimate conservative difference scheme. V, J. Comput. Phys. 

32:101 (1979). 



146 Nadiga 

19. H. C. Yee, A class of high-resolution explicit and implicit shock-capturing methods, 
NASA-TM 101088 (1989). 

20. D. I. Pullin, Direct simulation methods for compressible inviscid ideal-gas flow, J. Comput. 
Phys. 34:231 (1980). 

21. S. M. Deshpande, AIAA paper 86-0275 (1986). 
22. K. H. Prendergast and K. Xu, Numerical hydrodynamics from gas-kinetic theory, 

J. Comput. Phys. 109:53 (1993). 
23. P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I. 

Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 
94:511 (1954). 


